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Abstract

Some aspects of pin loaded laminates, including basic kinematics related to the contact angle and moving
boundary, validity and applicability of cosine distribution of contact stress, e�ects of sti�ness ratios as well as

clearance and friction are presented. Numerical results on the basis of a previously developed direct boundary
element procedure, with a re®ned and improved computational algorithm with additional capabilities are given and
used for discussing various aspects of pin-loaded orthotropic laminates. Empirical formulas based on generated
computer results are suggested. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The distribution of contact stresses along the edge of a pin-loaded hole in a plate has been an important
issue. Due to the complexity of the problem which involves moving boundary conditions as the con-
tact region between the pin and hole edge and depends on the magnitude of the load and other
geometrical and material parameters, many researchers have studied the problem by using various nu-
merical methods. While numerous studies have provided a good insight to the physical phenomena and
general understanding of the problem, the present state of the art still cannot be easily used by designers.
As an engineering approach, a simple cosine distribution of the radial contact stress is often used. On
the basis of such an assumption, Jong (1977), and Zhang and Ueng (1984) used complex stress func-
tions, and Mangalgiri et al. (1987) used an inverse technique to study stresses in an orthotropic plate of
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in®nite size under a load from a perfectly ®tted frictionless pin. All of these analytical solutions considered

the plate to be of in®nite size. Wong and Matthews (1981), Chang et al. (1983), Chang (1986), Chang and

Scott (1984a, 1984b), and Tsujimoto and Wilson (1986) used the ®nite element method for ®nite sized

plates. Mahajerin and Sikarskin (1986), and Lin and Lin (1993) used the boundary element method. Also,

Eshwar (1978) and Ghosh and Rao (1981) used complex stress functions for in®nite sized plates with a

perfectly ®tted pin. None of these studies addressed the pin-hole interaction as the pressure at the contact

surface is pre-assumed to vary as a cosine function.

There are studies accounting for the interaction between the pin and the hole. Hyer and Klang (1985)

Nomenclature

E11 Young's modulus in the longitudinal direction.
E22 Young's modulus in the transverse direction.
G12 shear modulus.
n12 Poisson's ratio.
t surface traction.
u displacement.
D hole diameter.
R hole radius.
a pin radius.
h thickness of the plate.
W width of the plate.
L length of the plate.
d1 plate edge distance from the hole center and the plate edge.
cij sti�ness constants.
Fij Green's function for traction.
Hij Green's function for displacement.
m coe�cient of static friction.
e clearance between the hole and the pin.
d pin displacement.
f polar angle with respect to the hole center.
c polar angle with respect to the pin center.
a one half of the total angle of contact.
b one half of the total contact angle of no-slip regions.
ux, uy displacement components of the hole-edge.
tx, ty traction components of the hole-edge.
ur radial displacement of the hole-edge.
sr, sf, trf stresses in polar coordinates.
sb average bearing stress.
s0 normal stress on the hole boundary at f=0.
sp peak normal stress on the hole boundary.
fp location of the peak normal stress.
sb normal contact stress at f=b.
ep
f circumferential strain of the hole along the hole edge.
S average normal stress.
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and Hyer et al. (1987) used a complex Fourier series in conjunction with boundary collocations.
Agarwal (1980), Rahman (1984), Naik and Crews (1986), Yogeswaren and Reddy (1988), Rahman and
Rowlands (1993), Eriksson et al. (1995), Blackie and Chutima (1996), and Camanho and Mattews
(1997) used ®nite element methods. Experimental studies were made by Waszczak and Cruse (1971),
Quinn and Matthews (1977), Pyner and Matthews (1979), Tsai and Morton (1990), and Cooper and
Turvey (1995).

Lin and Lin (1999) have established a direct boundary element procedure to study the contact stresses
around a pin loaded hole in composite laminates. Results compare well with earlier works such as those
given by Hyer and Klang (1985) and Hyer et al. (1987). While the established boundary element method
is e�ective, the procedure used in Lin and Lin (1999) has been further improved for its computational
e�ciency with added capability for computing deformation and stresses in generally orthotropic
laminates of ®nite size. Data can be generated to establish empirical formulae to help simplify the
analysis procedure for designers.

2. The model, basic relations and conditions

Generally orthotropic laminates of ®nite size subjected to a load, P, in the longitudinal x direction
from a rigid pin allowing a clearance and accounting for friction between the pin and the hole edge are
considered for the modeling of the problem. The geometry, coordinate systems and some symbols are
shown in Fig. 1. The pin-loaded plate is ®nite and the initial origins of coordinate systems are placed at

Fig. 1. Geometry and coordinate system for pin-loaded laminate.
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the hole center, O, of the plate. The clearance, e, is the di�erence in radii of the hole and the pin. The
coe�cient of static friction, m, is used for identifying whether parts of the contact region slip or not. f
and c are polar angles of coordinate ®xed on the plate and pin, respectively. The angle 2a represents the
total contact region, whereas the angle 2b identi®es the no-slip region.

2.1. Angle of contact 2aa

If there is no clearance, the pin and the hole edge are in contact everywhere with the contact angle of
2a=3608 or a=1808 before the load is applied. Once the deformation of the hole occurs, one part of the
hole separates from the pin while the rest remains in contact. The last two points on the pin which can
be in contact with the hole are at c=2908. Hence, if the edge of the hole is inextensible in the
circumferential direction, the contact arc length of the hole edge being 2aR must be equal to one half of
the pin surface of ap. The angle a, identifying the contact region, becomes 908 for a=R. However, since
the edge of the hole is extensible in the circumferential direction, a decreases from 908 as the load
increases or as the pin is moved forward. So, as soon as there is a load or the pin has a slight
movement, a drops momentarily to about 908 and continues to reduce as the load increases.

On the other hand, if there is a clearance, the pin contacts the hole at the point corresponding to
f=c=08 when no load is transmitted, or the pin is just moved by the amount of the clearance, e. The
contact angle a gradually increases as the load increases.

Consequently, the angle a identifying the extent of the contact region decreases for no clearance case,
while a increases for e > 0 as the load increases. Although, there is no limiting value for a as the hole
edge is extensional in the circumferential direction, the upper bound limit corresponding to an
inextensible hole is

amax � ap
2R
: �1�

2.2. Kinematics of moving boundary

The matching points of contact on the hole edge and pin surface change as the load P changes. Such
a contact interface may be referred to as a moving boundary. After the plate is deformed due to the
movement of the pin as shown in Fig. 1, the point of contact C moves to C ' and a point Ah on the hole
moves to A 0h, which matches A 0p displaced from the point Ap of the pin. As a result, the circumferential
length C 0A 0h of the hole edge must be equal to the length C 0A 0p as well as CAp. Assuming a rigid pin, we
arrive at

ac �
�f
0

R
�
1� eh

f

�
df � Rf� R

�f
0

Reh
f df, �2�

in which the superscripts `p' and `h' denote the pin and the hole, respectively; eh
f is the circumferential

strain along the hole boundary.

2.3. Contact interface

The following compatibility conditions in displacement between the pin and the hole on the no-slip
contact surface (ÿb< f< b ) must be satis®ed:

R cos f� ux � a cos c� �e� d� �ÿb < f < b� �3a�
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R sin f� uy � a sin c �ÿb < f < b� �3b�

at r=R where r is the radial coordinate with respect to the center of the hole, ux and uy are
displacements of the hole-edge in the x- and y-directions, respectively, and d is the longitudinal
movement of the pin beyond the ®rst contact. In the slip region (b R f< a ) and (ÿa < f R ÿb ), the
following compatibility of the displacement in the radial direction of the pin and hole edge

ur � ux cos f� uy sin f � �e� d� a cos c�cos f� a sin c sin fÿ R �ÿa < fRÿ b and

bRf < a�
�4a�

and the force condition

jtrfj � mjsrj �ÿa < fRÿ b and bRf < a� �4b�

for r=R are to be satis®ed, where ur is the radial displacement of the hole-edge and m is the coe�cient
of static friction between the pin and hole edge. In the non-contact region along the hole-edge
(a R f R 2pÿa ), the radial and shear stresses sr and trf are zero.

To accommodate the computational algorithm, Eq. (4b) is based on the relationships

sr � tx cos f� ty sin f, trf � ÿtx sin f� ty cos f, �5a�

when sr < 0 is rewritten as follows:

ty � sin f� m cos f
cos fÿ m sin f

tx �ÿa < fRÿ b and bRf < a�, �5b�

where negative sr denotes compressive stress.
The conditions required by eqns Eqs. (3a), (3b) and (4a) involve the angle c which locates the

matching point on the pin to that on the hole de®ned by f. The exact relation of c to f is given in Eq.
(2), which involves the circumferential strain along the contact region of the hole edge. For this
relationship to be satis®ed on the moving boundary would require an iterative procedure which makes
the analysis extremely di�cult, if not impossible. Hyer and Klang (1985) and Hyer et al. (1987) simply
take c=f without speci®c explanation, while Lin and Lin (1999) proposed ac=Rf based on kinematic
reasoning. Inasmuch as the contribution of eh

f is believed to be small, the use of the ac=Rf relation
including the clearance e�ect would be adequate. An alternative possibility for an improved
approximation is to assign an estimated average circumferential strain for the contact region. In the
present study, all numerical results are computed by neglecting the circumferential strain e�ect but
including the clearance e�ect. According to the limited results obtained in the study, the maximum
average circumferential strain is in the order of about 6 percent.

3. Analysis

The direct boundary element method derived from the work of Banerjee and Butter®eld (1981) and
used in Lin and Lin (1999) is followed. If no body force exists, as is considered in the present study, the
basic resulting equation for determining the displacement is

kuj�x� �
�
S

�ti�x�Hij�x,x� ÿ Fij�x,x�ui�x��ds�x�, �6�
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in which the value of k equals 1 when point x is inside of s, 1/2 when x lies on s, and zero when x is
outside of s; x locates an interior point and x for a boundary point; Fij and Hij are Green's functions for
traction and displacements, respectively, at a point x in the i direction due to a unit force applied at
point x in the j direction, and ui and ti are the displacement and traction, respectively. Other details and
discussions on the use of integral formulations for the direct boundary element method and the
fundamental solution given in Rizzo and Shippy (1970) can be found in Lin and Lin (1999).

3.1. Discretization of the boundary

A detailed descriptions on discretization can be found in Lin (1998); a brief discussion is presented
here. The entire boundary is divided into M quadratic elements which consist of Mc1 , Mc2 and Mnc

elements for slip contact regions, no-slip contact regions, and the remaining non-contact hole edge and
the exterior boundary of the plate, respectively. Each element has three nodes with two end nodes joined
to adjacent elements. Each node of an element has two displacement and two traction components. Due
to geometric compatibility, only two displacement components for each set of the common end nodes
joined to adjacent elements are used, while two traction components are required to describe the force
state at each end node. From Eq. (6), we can relate the displacement vector of a nodal point p in terms
of tractions or displacements at all (2M ) nodal points on the entire boundary as

1

2
fu pg �

XM
q�1

"�
Sq

H pqN dS

#
ftqg ÿ

XM
q�1

"�
Sq

F pqN dS

#
fuqg � p � 1,2, . . . ,2M �, �7�

where N is the shape function. Eq. (7) can be represented by simple matrix equation, as follows:

�F �fug � �H �ftg, �8�

in which {up } has been merged into {u }, and [F ] and [H ] are 4M � 4M and 4M � 6M matrices,
respectively; {u } and {t } have dimensions of 4M � 1 and 6M � 1, respectively.

In the slip region along the contact surface of the hole boundary, one needs to specify one
displacement component given in Eq. (4a) for compatibility, and one traction component given in Eq.
(5b) for the force condition at each of the 2Mc1 nodal points. Thus, the number of equations involved in
Eq. (8) can be reduced and written in the following form:

� �F �fug � � �FB� � � �H �ftg, �9�

in which � �F � and � �H � are reduced to 4M� �4Mnc � 2Mc1 � 4Mc2 � and 4M� �6Mnc � 2Mc1 � 4Mc2�
matrices, respectively, and [FB ] is a 4M � 1 matrix; {u } and {t } are reduced to �4Mnc � 2Mc1 � 4Mc2� �
1 and �6Mnc � 2Mc1 � 4Mc2� � 1, respectively. Note that subscripts nc denote the part of the boundary
other than the contact region of the hole edge. The matrices [F ], [FB ] and [H ] in Eq. (9) are related to
[F ] and [H ] in Eq. (8) through the use of Eqs. (4a) and (5b) as follows:h

�F
Mc1

i,jÿ1
i
�
h
F

Mc1

i,jÿ1
i
ÿ
h
F

Mc1

i,j

i
cot f,

h
�F
Mc1

Bi

i
�
h
F

Mc1

Bi

i
�
��

d� e� a cos

�
R

a
f

��
cos f� a sin

�
R

a
f

�
sin fÿ R

�h �F
Mc1

i,j

i
sin f

,
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h
�F
Mc1

i,j

i
� 0

�
i � 1,2, . . . ,4M
j � 2,4, . . . ,4Mc1 � j � even� �10�

and h
�H
Mc1

i,jÿ1
i
�
h
H

Mc1

i,jÿ1
i
�
h
H

Mc1

i,j

i�
sin f� m cos f
cos fÿ m sin f

�
,

h
�H
Mc1

i,j

i
� 0

�
i � 1,2, . . . ,4M
j � 2,4, . . . ,6Mc1 � j � even� : �11�

Using the 6Mnc � 4Mc2 tractions or displacements given from the boundary conditions at all 2Mnc

nodes and all 2Mc2 nodal points, Eq. (9) can be rewritten in the following form:

�A�fX g � �B �fY g, �12�

where [A ] is a 4M � 4M matrix and {X } contains the 4M � 1 unknown traction and displacement
components, [B ] is a 4M� �6Mnc � 4Mc2� matrix, and {Y } contains the given �6Mnc � 4Mc2 � boundary
quantities. It may be noted that if the Mc number of corner points on the `nc' part of the boundary can
be identi®ed, then 6Mnc can be reduced to (4Mnc+2Mc ). Clearly, if the entire boundary is perfectly
smooth, 6Mnc can further be reduced to 4Mnc.

3.2. Displacements and stresses in the plate

Most of the previous studies, including the authors' earlier work (Lin and Lin, 1999), were focused on
the investigation of contact stresses between the pin and the hole edge. The work presented in Lin and
Lin (1999) has been expanded to include the capability of determining displacements and stresses in the
plate to examine deformation and determine the state of stress for eventual design applications. To solve
the boundary value problem in plane elasticity using the fundamental solution, the displacement and
traction at each boundary element are given. As a result, the displacement at any point, �p , can be
determined from the known values of the displacements and tractions from the boundary points as
follows:

h
u

�p
j

i
�
XM
q�1

��
S

H
q
ijN dS

��
t
q
i

	ÿXM
q�1

��
S

F
q
ijN dS

��
u
q
i

	 �i,j � 1,2�, �13�

from which the strain components, ex, ey and gxy, can be determined subsequently. The stresses at a
point can then be determined from the following stress±strain relation:8<:

sx
sy
sxy

9=; �
24 c11 c12 0
c12 c22 0
0 0c66

358<:
ex
ey
gxy

9=;, �14�

in which the sti�ness constants, cij, and the stresses, sij, are taken as mean values through the thickness
of the laminate. The stress components may be expressed as follows:

h
s �p
ij

i
�
XM
q�1

��
S

D
q
ijkN dS

��
t
q
k

	ÿXM
q�1

��
S

U
q
ijkN dS

��
u
q
k

	
, �15�
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in which the coe�cients Dijk and Uijk for each q, de®ned below are related to the strain components
which involve the derivations of Hij and Fij, as may be seen in Eqs. (13) and (14).

D111 � c11
@H11

@x1
� c12

@H21

@x2
,

D211 � c11
@H12

@x1
� c12

@H22

@x2
,

D122 � c12
@H11

@x1
� c22

@H21

@x2
,

D222 � c12
@H12

@x1
� c22

@H22

@x2
,

D112 � c66

�
@H11

@x2
� @H21

@x1

�
,

D212 � c66

�
@H12

@x2
� @H22

@x1

�
,

U111 � c11
@F11

@x1
� c12

@F21

@x2
,

U211 � c11
@F12

@x1
� c12

@F22

@x2
,

U122 � c12
@F11

@x1
� c22

@F21

@x2
,

U222 � c12
@F12

@x1
� c22

@F22

@x2
,

U112 � c66

�
@F11

@x2
� @F21

@x1

�
,

U212 � c66

�
@F12

@x2
� @H22

@x1

�
:

3.3. Model for numerical examples

Because of the symmetry of the geometry, material properties and loading, one half (0 R y R W/2) of
the plate is modeled with boundary elements as shown in Fig. 2. The boundary conditions are as follows:

C.-C. Lin et al. / International Journal of Solids and Structures 37 (2000) 599±625606



Along x=ÿL+d1 (for 0 R y R W/2):

ux � 0 and ty � 0 �16�
Along y= 0 (for ÿL+d1 R x R ÿR and R R x R d1):

uy � 0 and tx � 0 �17�
Along x=d1 (for 0 R y R W/2) and y=W/2 (for ÿL+d1 R x R d1):

tx � 0 and ty � 0 �18�
Along the non-contact region of the hole boundary r=R (a R f R 2pÿa ):

sr � trf � 0 �19�
Along the contact region of the hole boundary r=R: follow Eqs. (3) and (4).

3.4. Computational algorithm

The computational algorithm used for determining the contact regions and stresses and displacements
is outlined as follows:

Step 1. Input data including material properties, geometrical dimensions, friction coe�cient m,
clearance, e, and a load, P.

Step 2. Assign values for angles a and b.

Fig. 2. Boundary element model for the pin-loaded laminates.
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Step 3. Calculate tractions tx, ty and displacements ux, uy of nodal points on the boundary elements.
Step 4. Calculate stresses sr and trf around the contact region of the hole according to Eqs. (5a) and

(5b).
Step 5. Use the computed values of sr and trf to check whether or not the force conditions of Eq. (4b)

for b and Eq. (19) for a are satis®ed.
Step 6. Repeat steps 2±5 until a converged solution is obtained.
Step 7. Calculate displacement components, ui, and stress components, sij, at required points, according

to Eqs. (13) and (15).

4. Numerical results and discussions

In all numerical results L = 2.5W = 254 mm, h = 5.08 mm and R = 12.7 mm are used. For the
convenience of discussion, s and t are used for the contact normal and shearing stresses between the pin
and the hole edge, respectively. The average normal stress in the plate, S=P/Wh, where
Wh = 516.128 mm2 and P is the total applied load in the longitudinal (x ) direction from the pin.

4.1. Validity of the cosine distribution

For simplicity of analysis, the distribution of s along a frictionless hole with zero clearance is
generally assumed to vary as a cosine function of f for ÿp/2 R f R p/2. The radial stress s determined
from overall equilibrium condition becomes

s�f� � ÿ4sb

p
cos f, �20�

in which the average bearing stress,

sb � P

Dh
,

where D is the hole diameter and h is the total thickness of the plate. While the assumption of a cosine
distribution of s greatly simpli®es the analysis, it cannot be generally valid. An orthotropic plate is
examined at various levels of orthotropy to explore the validity and potential applicability of the
assumption.

For an orthotropic laminate with a given set of e�ective longitudinal sti�ness Exx=146.757 GPa and
Poisson's ratio nxy=0.26 loaded by a perfectly ®tting smooth pin at P/h = 10 KN/mm or S= 0.26 GPa,
the distribution of the normal stress s along the hole edge for various sti�ness ratios of Exx/Eyy, ranging
from 1/13.481 to 13.481, are computed for three di�erent values of Gxy/Exx=0.02, 0.1 and 0.8. They are
used to examine the validity and applicability of cosine distribution assumption for s. The derived radial
stress distribution and normalized stresses along the hole boundary, for a range of sti�ness ratios, are
compared with the values obtained from the cosine distribution as shown in Figs. 3±5. The distribution
of s corresponding to Exx/Eyy=7, 5 and 5 agree quite well with the cosine distribution for
Gxy/Exx=0.02, 0.1 and 0.8, respectively. Since the contact angle for the cosine distribution is assumed to
be 908, while the actual contact angle a is less than 908, it may be more desirable to identify cases which
closely match the cosine distribution by normalized s and f with respect to |s0| and a, respectively,
where |s0| is the magnitude of s at f=0. The non-dimensionalized results presented in Figs. 3±5
indicate that Exx/Eyy=13.481, 5 and 5 give better matches. The distribution of s deviates from the
cosine distribution and may become quite severe for low values of Exx/Eyy.
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Fig. 3. E�ect of sti�ness ratio on s for Exx=146.757 GPa, Gxy=0.02Exx, nxy=0.26, e = 0, m=0 and P/h= 10.0 KN/mm

(S= 0.2 GPa).
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Fig. 4. E�ect of sti�ness ratio on s for Exx=146.757 GPa, Gxy=0.1Exx, nxy=0.26, e= 0, m=0, and P/h= 10.0 KN/mm

(S= 0.2 GPa).
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Fig. 5. E�ect of sti�ness ratio on s for Exx=146.757 GPa, Gxy=0.8Exx, nxy=0.26, e = 0, m=0 and P/h= 10.0 KN/mm

(S= 0.2 GPa).
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Knowing that a compatible deformation of the hole edge and the pin surface cannot be maintained
when the stress distribution of s is pre-assumed, displacements at various points along the hole edge for
Exx/Eyy=1/13.481 and Exx=146.757 GPa, Gxy=0.02Exx, nxy=0.26, P/h = 10 KN/mm or S=0.26 GPa
were calculated and are shown in Table 1. Values of mismatch D for f, ranging from 0 to 908, are also
given in Table 1. The displaced pin surface and the deformed hole edge from the boundary element
procedure matches very well. Since the cosine distribution of s di�ers quite signi®cantly from the actual
distribution for this case as shown in Fig. 3, deformation based on the cosine assumption indicates that
there are gaps and overlaps of the pin and the hole edge in the region which is assumed to be in
contact. The maximum gap of 0.2443d at f=0 decreases as f increases to about 368, then the pin
overlaps the deformed hole boundary until about 868. The largest overlap of 0.0894d occurs at f=638.
The overlap D is de®ned as the distance measured from the hole edge to the pin along the radial
direction with respect to the pin center O 0p after deformation. The magnitude of D is equal to aÿ��������������������������������������������������������x� ux� ÿ d�2 � � y� uy�2
p

and the description of D is shown in Fig. 6, where a negative D denotes the
gap. It is interesting to note that while there are mismatches in the contact region when the cosine
assumption is used, the deformation at the non-contact region of the hole, not in contact with the pin is
in excellent agreement with the present boundary element results. A few displacements of the hole edge
based on the boundary element solutions are given in Table 2 for reference.

Table 1

Mismatch D of displaced pin and hole edge based on cosine assumption (d=1.10 mm, D for overlap if +, gap if ÿ)

f (deg) (x+ux )ÿd (mm) y+uy (mm) Mismatch D (mm)

0 12.9688 0.0000 ÿ0.2688
9 12.7942 1.9984 ÿ0.2493
18 12.2750 3.9491 ÿ0.1946
27 11.4293 5.8018 ÿ0.1176
36 10.2850 7.5100 ÿ0.0350
40 9.6116 8.2964 0.0030

45 8.8773 9.0311 0.0364

54 7.2470 10.3275 0.0835

63 5.4385 11.3676 0.0984

72 3.4985 12.1260 0.0794

81 1.4753 12.5850 0.0288

86 0.4477 12.6985 ÿ0.0064
90 ÿ0.5826 12.7338 ÿ0.0471

Fig. 6. The mismatch D between the pin and hole boundary after deformation.
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From the results to be presented later, it is found that for the case of a smooth pin without clearance,
e=m=0, the contact angle a is essentially independent of the level of applied load. Hence, if the
distribution of s can be identi®ed and represented by a cosine variation for certain laminate designs, the
analysis of such pin-loaded laminates would be greatly simpli®ed.

4.2. E�ect of sti�ness ratios

Data generated from investigating matters related to the cosine distribution of s also indicate the e�ects
of the sti�ness ratios, Exx/Eyy and Gxy/Exx, as shown in Figs. 3±5. The three selected shear sti�ness ratios
of 0.02, 0.2 and 0.8 may represent low, intermediate and high values, respectively. For all three shown
in Figs. 3±5, the peak normal stress sp occurring near f=0 for large values of the extensional sti�ness
ratio, decreases and gradually moves towards the edges of contact regions as Exx/Eyy decreases. As the
location of the peak normal stress moves away from f=0, the trend begins to reverse at around f=258
to 308. The largest peak stress corresponding to the smallest Exx/Eyy of 1/13.481 occurs at about 608 for
the low and intermediate levels of shear sti�ness ratio, and 708 for high Gxy/Exx ratios.

In what follows, the contact angle, a, and the e�ects of e and m are investigated for laminates with
three common stacking sequences. The elasticity constants with reference to the material axes 1 and 2
are E11=146.757 GPa, E22=10.886 GPa, G12=6.408 GPa and n12=0.38. The e�ective sti�ness with
respect to x and y coordinates for these three laminates 1, 2 and 3 are given in Table 3. Note that angles
identifying the lamination types are those between the x- and 1- coordinates. A total of 50 boundary
elements with 10 of them meshed in the contact region along the hole are used.

4.3. Contact angle a

To quantitatively support the discussion made earlier on the basis of physical reasoning regarding the
angle of contact, the three laminates with m=0 and e = 0 and 0.2 mm are considered. Results for a
versus applied average stress S are shown in Fig. 7. For e = 0, a is virtually constant at 858, 85.18 and
84.18 for laminates 1, 2 and 3, respectively, for all values of S. For e = 0.2 mm, a increases
monotonically from zero as S increases. The variation of a versus S is quite sharp for lower values of S,
and becomes quite gentle for large values of S.

Table 2

Displacements of non-contact region of the hole

f (deg) 0 6 18 30 47 63 73 74 90 129 141 180

ux (mm) 1.10 1.10 1.09 1.06 0.98 0.82 0.68 0.67 0.52 0.32 0.28 0.23

uy (mm) 0.00 0.01 0.04 0.07 0.12 0.14 0.13 0.13 0.11 0.04 0.02 0.00

Table 3

E�ective material properties of the laminated plates

Laminate no. Lamination type Exx (GPa) Eyy (GPa) Gxy (GPa) nxy

1 08 146.757 10.8862 6.4077 0.38

2 (08/2458/908) 57.85 57.85 22.077 0.31

3 908 10.8862 146.757 6.407 0.0282
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Fig. 7. E�ect of pin-loaded clearance on contact angle for m=0.

Fig. 8. E�ect of pin-loaded clearance on contact stresses in Laminate 1 with m=0.2 and P/h= 8.1 KN/mm (S= 0.16 GPa).
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4.4. E�ect of clearance e

Radial and shear stress distributions around the pin-loaded hole for the three laminates with m=0.2
for e= 0, 0.05 mm, 0.1 mm, 0.15 mm and 0.2 mm are considered. The applied average stresses

Fig. 9. E�ect of pin-loaded clearance on contact stresses in Laminate 2 with m=0.2 and P/h= 3.0 KN/mm (S= 0.06 GPa).

Fig. 10. E�ect of pin-loaded clearance on contact stresses in Laminate 3 with m=0.2 and P/h= 1.8 KN/mm (S= 0.035 GPa).
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S= 0.16 GPa, 0.06 GPa and 0.035 GPa for Laminates 1, 2, and 3, respectively were used. Results are
shown in Figs. 8±10. The e�ects of e are summarized as follows:

1. The contact angle, a, decreases as e increases.
2. The peak normal stress sp increases as e increases for Exx > Eyy as for Laminates 1 and 2, but

Fig. 11. E�ect of pin-loaded friction on contact stresses in Laminate 1 with e= 0.2 mm and P/h = 8.1 KN/mm (S= 0.16 GPa).

Fig. 12. E�ect of pin-loaded friction on contact stresses in Laminate 2 with e= 0.2 mm and P/h = 8.1 KN/mm (S= 0.16 GPa).
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decreases as e increases when Exx becomes much less than Eyy, such as for Laminate 3.
3. The normal stress s0 at f=0 increases as e increases.
4. The location fp of the peak normal stress clearly decreases as e increases for Exx < Eyy as Laminates

2 and 3, but is not obvious when Exx becomes much larger than Eyy such as for Laminate 1.
5. The angle b remains a small value of less than 58 for all cases.

4.5. E�ect of coe�cient of friction m

Radial and shear stress distributions around the pin-loaded hole for the three laminates with
e = 0.2 mm under S= 0.16 GPa for m=0, 0.1, 0.2, 0.3 and 0.4 are considered. Results are shown in
Figs. 11±13. The e�ects of m are summarized as follows:

1. The contact angle a increases as m increases.
2. The peak normal stress sp decreases as m increases.
3. The normal stress s0 at f=0 decreases as m increases.
4. The location fp of the peak normal stress increases as m increases.
5. The angle b increases as m increases.

5. Empirical formulae

A number of analytical and numerical methods discussed in the introduction are available for
analyzing plates with a pin-loaded hole, provided the stresses along the hole boundary are given. The
cosine distribution of contact normal stress was generally assumed in the past. However, in order to

Fig. 13. E�ect of pin-loaded friction on contact stresses in Laminate 3 with e= 0.2 mm and P/h = 8.1 KN/mm (S= 0.16 GPa).
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prescribe a correct traction distribution along the hole boundary, the interaction of the pin and plate
must be considered ®rst, which is the di�cult part. While the boundary element method developed in
the study has shown its capability of determining the interacting stresses along the hole boundary, the
process requires a fair amount of knowledge in the boundary element method with considerable
familiarity and experience in the computer program. As a result, this represents some what of a hurdle
or tedium in the entire analysis process of the pin-loaded plate problems for designers. To help reduce
the e�ort of specifying more realistic tractions distribution along the hole boundary, empirical formulae
based on data generated by the present boundary element method would be useful to users having their
own follow-up programs, including the present one for determining stresses and deformation of the
plate; it also may help simplify the design process when repeated calculations for determining stresses
and deformation are needed. By reviewing a large quantity of numerical results, common trends of
stress distribution along the hole boundary are noted. Therefore, it appears possible that empirical
formulae for contact stresses between the pin and the hole boundary may be established. The process
and procedure for establishing the empirical formulae for a representative case is presented for
illustrative purposes, and a limited database has been generated for this one class of problems which is
believed to be realistic. The commonly used graphite epoxy as the basic lamination material, and widely
used stacking sequence classi®ed as Laminates 1, 2, and 3 before are considered here. Their e�ective
material properties are given in Table 3. Numerical results such as those presented in Figs. 8±13 for the
con®guration considered in this study exhibit common trends of stress variation along the hole
boundary for various clearances and coe�cients of friction. It appears adequate to represent an
empirical equation in two segments for the contact normal pressure, and each segment may be
represented by a polynomial in non-dimensional form such as

�s � �s0�1ÿ 2Z2 � Z4� � 2Z2 ÿ Z4 for 0RZR1 �21�

and

�s � 1ÿ
 
zÿ zp

1ÿ zp

!2

�Y�zÿ zp�2
h
�zÿ zp�mÿ2 ÿ �1ÿ zp�mÿ2

i
for zpRzR1, �22�

for m > 2, where Z=f/fp, z=f/a, and �s � s=sp. The subscripts `0' and `p' denote the locations of the
associated quantities at f=0 and the point having the peak contact normal stress, respectively. The
suggested formulae given in Eqs. (21) and (22) satisfy the following conditions:

s � s0 and
ds
df
� 0 at f � 0,

s � sp and
ds
df
� 0 at f � fp

and

s � 0 at f � a:

The power m is left to be selected to give a desirable ®t to the s±f curves, and the simplest case is to
take m= 3. The constant Y is to be determined by satisfying the equipollence of the resultant of
contact stresses and the applied load, resulting in the following condition:
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P �
�a
0

ÿ s cos fR df�
�a
0

t sin fR df

�
�a
0

ÿ s cos fR df�
�b
0

t sin fR df�
�a
b
m�ÿs�sin fR df, �23�

which involves the following integrals

Sn �
�
fn sin f df and Cn �

�
fn cos f df,

where S0=ÿcos f, C0=sin f, Sn=nCn ÿ 1ÿfn cos f and Cn=ÿnSn ÿ 1+fn sin f . Empirical Eqs. (21)
and (22) accurately represent the results presented in Fig. 8, where fp is much smaller than a. If the
region from f=0 to fp occupies a large portion of the entire contact region such as those presented in
Fig. 10, the last term in Eq. (22) may be omitted and a similar term be added in Eq. (21). It should be
noted here that Eqs. (21) and (22) are probably the simplest form suggested for the geometry and
loading of the laminates considered in this study. They may be further improved by adding higher order
terms if desired.

The shear stress t=ms for the slip region, and varies from 0 to msb for f=0 to b for the no-slip
region where sb is the normal contact stress at f=b. The shear stress distribution in the no-slip region
may be represented by a unit step function with a magnitude of msb for cases having a small b, and a
linear or quadratic functions for f varying from 0 to msb for larger values of b. The linear variation is
used in this study. At any rate, it may be noted here that one only needs to establish empirical formulae
for contact normal stress. As mentioned before, Figs. 8±13 contains two classes of results. Class 1 are
those associated with results such as those in Figs. 8±10 and correspond to the variation of clearances,
and Class 2 are those associated with Figs. 11±13 and correspond to the variation of the coe�cient of
friction. Interpolation functions for classes 1 and 2 may be represented by linear functions of e and
quadratic functions of m, respectively as follows:

Class 1:

l � ll ÿ ll ÿ ls
el ÿ es

�el ÿ e� �24�

Class 2:

l � ls � 1

mlmm�ml ÿ mm�
��
m2l lm ÿ m2mll �

ÿ
m2m ÿ m2l

�
ls
�
m� �mmll ÿ mllm � �ml ÿ mm�ls�m2

	
, �25�

where l stands for b, a, fp, s0, sb and sp, whichever parameter is under consideration. Data similar to
the results shown in Fig. 7 for b, a, fp, s0, sb and sp corresponding to es, el, ms, mm and ml under a
range of S have been generated to establish the database. For illustrative purposes, results presented in
Figs. 8 and 11 for the plate under P/h = 8.1 KN/mm or S=0.16 GPa are revisited. The values of b, a,
fp, s0, sb and sp corresponding to es and el are given in Table 4 for m=0.2 for all three laminates.
Their values corresponding to ms, mm and ml for e = 0.2 mm are given in Table 5.

As a ®rst numerical example, we consider m=0.2 and e= 0.1 mm. Using the interpolation equation
Eq. (24), the values of b, a, fp, s0, sb and sp are found to agree well with the results obtained directly
from the boundary element program. The overall variation of contact normal stress s using several test
values of m in the empirical formulae are all compared reasonably well with the boundary element
solutions as shown in Fig. 14. It is judged that m= 3 gives the best approximation for this case, and is
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also true for the e = 0 and 0.2 mm cases, although detailed results are omitted here. The maximum
deviation of s based on the empirical formulae is roughly estimated to be less than 9 percent below the
boundary element solution at f=108, where fp=21.38. To examine the contact normal stress
distribution corresponding to the key quantities given in Table 5 which are used in the interpolation
equation Eq. (25), results based on the empirical formulae for various value of m all compare
reasonably well with the boundary element solutions except those near the end for values of f close to a
where low normal stresses occur as shown in Figs. 15 and 16. Again, m = 3 is judged to give the best
representation. As a second numerical example, we judge that m=0.1, e= 0.2 mm, and m= 3 give the
best approximation. Through the interpolation equation Eq. (25), results are presented in Fig. 17. The
key parameters as well as the normal stress distribution along the contact region agree well with the
boundary element solutions except for the normal stresses near f=a having low values. The empirical
results for the peak stress sp and the normal stress s0 at f=0 are about 3.4 and 3.8 percent higher than
the boundary element results, respectively.

6. An example

Results of one of the case for laminate 1 with m=0.2 and e = 0 presented earlier are used here to help
summarize the analysis procedure. These results are contained in Figs. 7 and 8, and Table 4. The
contact angle, a, for a range of loading is shown in Fig. 7 which is a representative ®gure in the
database for l denoting b, a, fp, s0, sb and sp. From Fig. 7 and as discussed before, since e = 0, one
may consider a, b and fp to be independent of loading. Their values are given in Table 4 as 87.568, 2.58
and 21.98, respectively. As a result, stresses and deformation become linear functions of the applied far

Table 5

Key quantities for empirical formula (e= 0.2 mm)

Laminate no. m s0 sp sb fp (deg) a (deg) b (deg)

1 ml 0.4 ÿ0.4532 ÿ0.7136 ÿ0.6077 30.7 73.0 19.0

mm 0.2 ÿ0.6036 ÿ0.7957 ÿ0.6319 20.7 71.3 5.0

ms 0.0 ÿ1.0422 ÿ1.0422 0.0 0.0 70.0 0.0

2 ml 0.4 ÿ0.6102 ÿ0.6410 ÿ0.6050 39.6 64.3 28.0

mm 0.2 ÿ0.6532 ÿ0.7121 ÿ0.66897 30.8 63.3 12.0

ms 0.0 ÿ0.8161 ÿ0.8174 0.0 7.0 61.6 0.0

3 ml 0.4 ÿ0.3796 ÿ0.7254 ÿ0.3744 66.5 79.4 18.0

mm 0.2 ÿ0.41145 ÿ0.8105 ÿ0.4284 65.8 77.6 5.0

ms 0.0 ÿ0.5183 ÿ0.9172 0.0 58.7 75.7 0.0

Table 4

Key quantities for empirical formula (m=0.2)

Laminate no. e s0 sp sb fp (deg) a (deg) b (deg)

1 el 0.2 ÿ0.6029 ÿ0.7952 ÿ0.6313 20.7 71.5 5.0

es 0.0 ÿ0.5058 ÿ0.7372 ÿ0.5300 21.9 87.6 2.5

2 el 0.2 ÿ0.3123 ÿ0.3547 ÿ0.3452 15.4 45.2 5.0

es 0.0 ÿ0.1692 ÿ0.2204 0.1753 45.3 88.1 2.5

3 el 0.2 ÿ0.1338 ÿ0.1683 0.1397 40.6 58.5 4.2

es 0.0 ÿ0.0804 ÿ0.1992 0.0820 75.2 86.8 1.8
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Fig. 15. E�ect of the power m of empirical formulae on contact stresses for Laminate 1 with e = 0.2 mm, m=0.4, P/h= 8.1 KN/mm

(S= 0.16 GPa).

Fig. 14. E�ect of the power m of empirical formulae on contact stresses for Laminate 1 with e = 0.1 mm, m=0.2, P/h= 8.1 KN/mm

(S= 0.16 GPa).
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Fig. 17. E�ect of the power m of empirical formulae on contact stresses for Laminate 1 with e = 0.2 mm, m=0.1, P/h= 8.1 KN/mm

(S= 0.16 GPa).

Fig. 16. E�ect of the power m of empirical formulae on contact stresses for Laminate 1 with e = 0.2 mm, m=0, P/h= 8.1 KN/mm

(S= 0.16 GPa).
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®eld stress S. The contact normal and shear stress distributions for this case are shown in Fig. 8 for
S= 0.16 GPa. Based on the data given in Fig. 8, one may continue to use the present boundary element
program to calculate stresses and displacement at any point of the plate. On the other hand, one may
use the empirical formulae in conjunction with the interpolation equations to specify tractions along the
hole boundary and follow up with any other existing stress analysis programs, including the present one
as mentioned before. When the present boundary element program is used for the direct calculation as
well as through the empirical procedure, the contact normal and shear stresses agree well with each
other, a topic which has been discussed earlier. Results on the circumferential stress, sf, along the hole
edge based on the empirical procedure also agree well with those using the present boundary element
method directly; these are shown in Fig. 18.

7. Conclusions

Several aspects concerning the validity and applicability of cosine distribution of contact normal
stress, e�ects of sti�ness ratio as well as clearance and friction are addressed and investigated through
numerical results.

The direct boundary element procedure developed by Lin and Lin (1999) has been re®ned, improved
and extended. The procedure provides high computational e�ciency which allows one to generate
su�cient amount of data for the possibility of establishing empirical formulas to facilitate design
applications. It also has the capability of determining stresses and displacements at points on the
boundaries as well as in the interior part of laminates. On the basis of the numerical results, the
following conclusions may be made:

1. While the assumption of cosine distribution of contact normal stress greatly simpli®es the analysis
procedure, it may only be applicable to laminates having very speci®c extensional sti�ness ratios as

Fig. 18. Circumferential stress along hole-edge for Laminate 1 with e = 0, m=0.2.
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indicated in Figs. 3±5. The cosine distribution is di�erent from the actual distribution in general, and
the discrepancy could become quite signi®cant.

2. The shear sti�ness ratio Gxy/Exx does not seem to have a signi®cant e�ect on the general trend of
contact stresses for all extensional sti�ness ratios, Exx/Eyy, considered.

3. The contact angle, a, essentially remains constant for the case of zero clearance. For e > 0, a
increases sharply as S increases at lower values of S, and the rate of increase becomes quite mild for
large values of S.

4. The contact angle, a, decreases as e increases, and the peak normal stress, sp, increases as e increases
for Exx > Eyy as for Laminates 1 and 2, but decreases as e increases when Exx becomes much less
than Eyy, such as for Laminate 3.

5. The contact angle, a, increases as m increases, and the peak normal stress, sp, decreases as m increases.
6. The simple forms of the empirical formulae suggested in the study appear to work well for the

examples presented. In place of the cosine assumption of contact normal stress distribution, the
empirical formulae for contact normal and shear stresses give more reliable results and help simplify
the analysis of pin-loaded laminates.

Acknowledgements

The study was supported by the National Science Council of the Republic of China (TAIWAN)
under Grant NSC 88-2212-E-005-001.

References

Agarwal, B.L., 1980. Static strength prediction of bolted joint in composite material. AIAA Journal 18 (11), 1371±1375.

Banerjee, P.K., Butter®eld, R., 1981. Boundary Element Method in Engineering Science. McGraw±Hill, Maidenhead, UK.

Blackie, A.P., Chutima, S., 1996. Stress distributions in multi-fastened composite plates. Composite Structures 34, 427±436.

Camanho, P.P., Mattews, F.L., 1997. Stress analysis and strength prediction of mechanically fastened joint in FRP: A review.

Composites Ð Part A: Applied Science and Manufacturing 28 (6), 529±547.

Chang, F.K., Scott, R.A., Springer, G.S., 1983. Strength of mechanically fastened composite joints. Journal of Composite

Materials 16, 470±494.

Chang, F.K., Scott, R.A., 1984a. Failure of composite laminates containing pin loaded holes Ð method of solution. Journal of

Composite Materials 18, 255±278.

Chang, F.K., Scott, R.A., 1984b. Failure strength of nonlinearly elastic composite laminates containing a pin loaded hole. Journal

of Composite Materials 18, 464±477.

Chang, F.K., 1986. The e�ect of pin load distribution on the strength of pin loaded holes in laminated composites. Journal of

Composite Materials 20, 401±408.

Cooper, C., Turvey, G.J., 1995. E�ects of joint geometry and bolt torque on the structural performance of single bolt tension joints

in pultruded GRP sheet material. Composite Structures 32, 217±226.

Eriksson, I., Backlund, J., Moller, P., 1995. Design of multiple-row bolted composite joints under general in-plane loading.

Composite engineering joints and adhesion. In: Proceedings of the International Conference for Composite Engineering, vol. 5,

issue 8, pp. 1051±1068.

Eshwar, V.A., 1978. Analysis of clearance ®t pin joints. International Journal of Mech. Sci. 20, 485±491.

Ghosh, B.D., Rao, A.K., 1981. Load transfer from a smooth elastic pin to a large sheet. AIAA Journal 18 (5), 619±625.

Hyer, M.W., Klang, E.C., 1985. Contact stresses in pin-loaded orthotropic plates. International Journal of Solids and Structures 21

(9), 957±975.

Hyer, M.W., Klang, D.C., Cooper, D.E., 1987. The e�ects of pin elasticity, clearance, and friction on the stresses in a pin-loaded

orthotropic plate. Journal of Composite Materials 21, 190±206.

C.-C. Lin et al. / International Journal of Solids and Structures 37 (2000) 599±625624



Jong, T.D., 1977. Stresses around pin-loaded holes in elastically orthotropic or isotropic plates. Journal of Composite Materials 11,

313±331.

Lin, C.C., Lin, C.H., 1993. Stress and strength analysis of bolted composite joints using direct boundary element method. Journal

of Composite Structures 25, 209±215.

Lin, C.C., Lin, C.H., 1999. Stresses around pin-loaded hole in composite laminates using direct boundary element method.

International Journal of Solids and Structures 25, 209±215.

Lin, C.H., 1998. Analysis of Pin-Loaded Plates by a Boundary Element Method. Ph.D. dissertation, National Chung-Hsing

University, Taichung, Taiwan.

Mahajerin, E., Sikarskin, D.L., 1986. Boundary element study of a loaded hole in an orthotropic plate. Journal of Composite

Materials 20, 375±389.

Mangalgiri, P.D., Ramamurthy, T.S., Dattaguru, B., Rao, A.K., 1987. Elastic analysis of pin joints in plates under some combined

pin and plate loads. International Journal Mech. Sci. 29 (8), 577±585.

Naik, R.A., Crews, J.H., 1986. Stress analysis method for a clearance-®t bolt. AIAA Journal 24 (8), 1348±1353.

Quinn, W.J., Matthews, F.L., 1977. The e�ect of stacking sequence on the pin-bearing strength in glass ®bre reinforced plastic.

Journal of Composite Materials 11, 139±145.

Pyner, G.R., Matthews, F.L., 1979. Comparison of single and multi-hole bolted joints in glass ®bre reinforced plastic. Journal of

Composite Materials 13, 232±239.

Rahman, M.U., 1984. An iterative procedure for ®nite-element stress analysis of frictional contact problems. Computers &

Structures 18 (6), 947±954.

Rahman, M.U., Rowlands, R.E., 1993. Finite element analysis of multiple bolted joints in orthotropic plates. Computers &

Structures 46 (5), 859±867.

Rizzo, F.J., Shippy, D.J., 1970. A method for stress determination in plane anisotropic elastic bodies. Journal of Composite

Materials 4, 36±61.

Tsai, M.Y., Morton, J., 1990. Stress and failure analysis of pin-loaded composite plate: An experimental study. Journal of

Composite Materials 24, 1101±1121.

Tsujimoto, Y., Wilson, D., 1986. Elasto±plastic failure analysis of composite bolted joints. Journal of Composite Materials 20,

236±252.

Waszczak, J.P., Cruse, T.A., 1971. Failure mode and strength predictions of anisotropic bolt bearing specimens. Journal of

Composite materials 5, 421±425.

Wong, S., Matthews, F.L., 1981. A ®nite element analysis of single and two-hole bolted joints in ®bre reinforced elastic. Journal of

Composite Materials 15, 481±491.

Yogeswaren, E.K., Reddy, J.N., 1988. A study of contact stresses in pin-loaded orthotropic plates. Computers & Structures 30 (5),

1067±1077.

Zhang, K.D., Ueng, C.E.S., 1984. Stresses around a pin-loaded hole in orthotropic plates. Journal of Composite Materials 18,

432±446.

C.-C. Lin et al. / International Journal of Solids and Structures 37 (2000) 599±625 625


